Sperm motility of the scleractinian coral Acropora digitifera under preindustrial, current, and predicted ocean acidification regimes

نویسندگان

  • Masako Nakamura
  • Masaya Morita
چکیده

Ocean acidification caused by the uptake of anthropogenic CO2 in the oceans negatively affects the early life stages of corals by reducing their calcification rate. Acidification also inhibits the sperm motility of corals, potentially affecting fertilization success. We investigated the effects of different pCO2 (partial pressure of CO2) conditions on the sperm motility of Acropora digitifera. Using a pCO2-control system, we maintained pCO2 at concentrations from preindustrial and present-day levels up to the level predicted by the year 2100 (300, 400, and 1000 ppm, respectively). Our results indicated that ocean acidification has the potential to suppress the sperm flagellar motility of A. digitifera. Furthermore, sperm motility will likely decline by ~30%, which may impact fertility, if the sensitivity of sperm motility to decreasing pH cannot adapt over a span of ~90 yr.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eggs regulate sperm flagellar motility initiation, chemotaxis and inhibition in the coral Acropora digitifera, A. gemmifera and A. tenuis.

Corals perform simultaneous mass spawning around the full moon. Most Acropora species release gamete bundles, which are a complex of eggs and sperm, into the seawater. Then, gamete bundles are separated into eggs and sperm. Eggs are fertilized when sperm and eggs come in contact with each other. However, it is still unclear how sperm meet the eggs of the same species in the presence of many egg...

متن کامل

Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades

Ocean acidification is an ongoing threat for marine organisms due to the increasing atmospheric CO(2) concentration. Seawater acidification has a serious impact on physiologic processes in marine organisms at all life stages. On the other hand, potential tolerance to external pH changes has been reported in coral larvae. Information about the possible mechanisms underlying such tolerance respon...

متن کامل

Coral Larvae under Ocean Acidification: Survival, Metabolism, and Metamorphosis

Ocean acidification may negatively impact the early life stages of some marine invertebrates including corals. Although reduced growth of juvenile corals in acidified seawater has been reported, coral larvae have been reported to demonstrate some level of tolerance to reduced pH. We hypothesize that the observed tolerance of coral larvae to low pH may be partly explained by reduced metabolic ra...

متن کامل

Distribution of CpG Motifs in Upstream Gene Domains in a Reef Coral and Sea Anemone: Implications for Epigenetics in Cnidarians.

Coral reefs are under assault from stressors including global warming, ocean acidification, and urbanization. Knowing how these factors impact the future fate of reefs requires delineating stress responses across ecological, organismal and cellular scales. Recent advances in coral reef biology have integrated molecular processes with ecological fitness and have identified putative suites of tem...

متن کامل

A genomic approach to coral-dinoflagellate symbiosis: studies of Acropora digitifera and Symbiodinium minutum

Far more intimate knowledge of scleractinian coral biology is essential in order to understand how diverse coral-symbiont endosymbioses have been established. In particular, molecular and cellular mechanisms enabling the establishment and maintenance of obligate endosymbiosis with photosynthetic dinoflagellates require further clarification. By extension, such understanding may also shed light ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012